报告人:  Yuehua Wu教授( York University)

报告时间:2023年11月15日, 15:30-16:30

题目:A general latent dimension estimation method for nonstationary processes

摘要:In this talk, we consider the problem of modeling nonstationary processes. Bornn et al. (2012) proposed a dimension expansion method, a novel technique for modeling nonstationary processes, aiming to find a dimensionally sparse projection in which the originally nonstationary field exhibits stationarity. However, their dimension expansion approach is a lasso-penalized least-squares method that does not account for the covariance structure of the empirical semivariogram. We thus propose a general latent dimension estimation method by replacing the least-squares method with generalized least-squares (GLS). Furthermore, we improve the GLS method by weighted least-squares, which is more computationally efficient and accurate. The performance of the proposed methods is demonstrated through simulations and real data examples.

报告人简介:吴月华,加拿大约克大学数学与统计系教授。1989年获得美国匹兹堡大学统计学博士学位,师从世界著名统计学家C. R. Rao。研究领域广泛,包括空间统计、M-估计、模型选择、变点检测、非参数估计、金融统计等,以及在环境科学、信息科学、计量经济学、生物医学等领域中的应用,目前是国际统计学会的当选会员。在Proceeding of National Academy Science, USA,(美国国家科学院院刊),Biometrika,Statistica Sinica, Computational Statistics & Data Analysis, Journal of Multivariate Analysis等期刊发表学术论文140多篇。承担加拿大国家自然科学基金、加拿大环境署等多项科研项目。


邀请人:徐礼柏