报告时间:11.23, 9:00-10:00, 10:10-11:10
地点:逸夫楼235
报告人简介: 林志聪,山东大学数学与交叉科学研究中心教授,
国家优青获得者。主要从事计数组合学的研究,
在《J. Combin. Theory Ser. A》、《Combinatorica》、《European J. Combin.》、
《Proc. Amer. Math. Soc.》等权威期刊发表SCI学术论文40余篇。
任中国数学会计算机数学专业委员会委员和中国运筹学会图论组合分会青年理事。
近期的研究兴趣主要集中在排列统计量及其相关组合结构上的双射和同分布问题
报告摘要:
The binomial-Eulerian polynomials $\tilde{A}_n(t)$ are the binomial
transformation of the classical Eulerian polynomials. Postnikov,
Reiner and Williams proved that $\tilde{A}_n(t)$ are $\gamma$-positive,
which implies that they are palindromic and unimodal. In particular, t
he palindromicity of $\tilde{A_n(t)}$ is equivalent to an intriguing
symmetric Eulerian identity found by Chung, Graham and Knuth.
In this talk, I will present two extensions of $\tilde{A}_n(t)$
that possess refined $\gamma$-positivity using permutation statistics,
the Mahonian statistics and the Stirling statistics.
邀请人:马欣荣